Agentic AI Frequently Asked Questions

· 3 min read
Agentic AI Frequently Asked Questions

What is agentic AI and how does this differ from the traditional AI used in cybersecurity? Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Agentic AI is a more flexible and adaptive version of traditional AI. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.
How can agentic AI improve application security (AppSec?) practices? Agentic AI has the potential to revolutionize AppSec by integrating intelligent agents within the Software Development Lifecycle (SDLC). These agents can continuously monitor code repositories, analyze commits for vulnerabilities, and leverage advanced techniques like static code analysis, dynamic testing, and machine learning to identify a wide range of security issues. Agentic AI prioritizes vulnerabilities according to their impact in the real world and exploitability. This provides contextually aware insights into remediation. What is a code property graph (CPG), and why is it important for agentic AI in AppSec? A code property graph (CPG) is a rich representation of a codebase that captures relationships between various code elements, such as functions, variables, and data flows. Agentic AI can gain a deeper understanding of the application's structure and security posture by building a comprehensive CPG. This contextual awareness allows the AI to make better security decisions and prioritize vulnerabilities. It can also generate targeted fixes.  AI-powered automatic vulnerabilities fixing uses the CPG's deep understanding of the codebase to identify vulnerabilities and generate context-aware fixes that do not break existing features. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without breaking existing features or introducing any new bugs. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  Some potential challenges and risks include:

Ensuring trust and accountability in autonomous AI decision-making
AI protection against data manipulation and adversarial attacks
Building and maintaining accurate and up-to-date code property graphs
Addressing ethical and societal implications of autonomous systems
Integrating AI agentic into existing security tools
Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits, continuous monitoring, and explainable AI techniques can also help build trust in the decision-making processes of autonomous agents.  The following are some of the best practices for developing secure AI systems:

Adopting secure coding practices and following security guidelines throughout the AI development lifecycle
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensure data privacy and security when AI training and deployment
Conducting thorough testing and validation of AI models and generated outputs
Maintaining transparency and accountability in AI decision-making processes
Regularly monitoring and updating AI systems to adapt to evolving threats and vulnerabilities
How can agentic AI help organizations keep pace with the rapidly evolving threat landscape? By continuously monitoring  ai security verification , networks, and applications for new threats, agentic AI can assist organizations in keeping up with the rapidly changing threat landscape. These autonomous agents are able to analyze large amounts of data in real time, identifying attack patterns, vulnerabilities and anomalies which might be evading traditional security controls. Agentic AI systems provide proactive defenses against evolving cyber-threats by adapting their detection models and learning from every interaction.  Agentic AI is not complete without machine learning. It enables autonomous agents to learn from vast amounts of security data, identify patterns and correlations, and make intelligent decisions based on that knowledge. Machine learning algorithms power various aspects of agentic AI, including threat detection, vulnerability prioritization, and automatic fixing. By continuously learning and adapting, machine learning helps agentic AI systems improve their accuracy, efficiency, and effectiveness over time.  Agentic AI automates many of the laborious and time-consuming tasks that are involved in vulnerability management. Autonomous agents are able to continuously scan codebases and identify vulnerabilities. They can then prioritize these vulnerabilities based on the real-world impact of each vulnerability and their exploitability. They can also generate context-aware fixes automatically, reducing the time and effort required for manual remediation. Agentic AI allows security teams to respond to threats more effectively and quickly by providing actionable insights in real time.